Search results for "Potential well"
showing 10 items of 12 documents
Annihilation Characteristics of Confined 2D Positronium
2012
The 2D Positronium (2D Ps) atom confined in the 2D cave has been considered and its properties were compared with the 3D Positronium located in the infinity square well potential. Basing on the solution of Schrödinger equation for the 2D hydrogen atom the wave function of the 2D Ps was given. It allows us to calculate, for instance the angular correlation of the annihilation radiation (ACAR) of such a system. It was shown that the ACAR is much broad than ACAR for the 3D Ps and that for the Ps in the bubble model.
Enhancement of Electronic and Optical Properties of ZnO/Al2O3 Nanolaminate Coated Electrospun Nanofibers
2016
International audience; Nanolaminates are new class of promising nanomaterials with outstanding properties. Here we explored on the tuning of structural properties and the enhancement of electronic and optical properties of 1D PAN ZnO/Al2O3 nanolaminates designed by atomic layer deposition (ALD) and electrospinning. The influence of ZnO/Al2O3 bilayer thicknesses on the fundamental properties of 1D PAN ZnO/Al2O3 nanolaminates has been investigated. Due to the quantum confinement effect, the shift of XPS peaks to higher energies has been observed. Work function of Al2O3 was mostly independent of the bilayers number, whereas the ZnO work function decreased with an increase of the bilayer numbe…
Disentangling size effects and spectral inhomogeneity in carbon nanodots by ultrafast dynamical hole-burning.
2018
Carbon nanodots (CDs) are a novel family of nanomaterials exhibiting unique optical properties. In particular, their bright and tunable fluorescence redefines the paradigm of carbon as a "black" material and is considered very appealing for many applications. While the field keeps growing, understanding CDs fundamental properties and relating them to their variable structures becomes more and more critical. Two crucial problems concern the effect of size on the electronic structure of CDs, and to what extent their optical properties are influenced by structural disorder. Furthermore, it remains largely unclear whether traditional concepts borrowed from the photo-physics of semiconductor qua…
Size dependent light absorption modulation and enhanced carrier transport in germanium quantum dots devices
2015
Quantum confinement in closely packed arrays of Ge quantum dots (QDs) was studied for energy applications. In this work, we report an efficient tuning mechanism of the light harvesting and detection of Ge QDs. Thin films of SiGeO alloys, produced by rf-magnetron sputtering, were annealed at 600 degrees C in N-2 to induce precipitation of small amorphous Ge QDs into the oxide matrix. Varying the Ge content, the QD size was tailored between 2 and 4 nm, as measured by high resolution transmission electron microscopy. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of pure SiO2, as well as the presence of a sub-stoichiometric Ge oxide shell at the QD interface. Light …
Production of nanometer-size GaAs nanocristals by nanosecond laser ablation in liquid.
2012
This paper reports the formation and characterization of spherical GaAs quantum dots obtained by nanosecond pulsed laser ablation in a liquid (ethanol or methanol). The produced bare GaAs nanoparticles demonstrate rather narrow size distribution which depends on the applied laser power density (from 4.25 to 13.9 J/cm 2 in our experiments) and is as low as 2.5 nm for the highest power used. The absolute value of the average diameter also decreases significantly, from 13.7 to 8.7 nm, as the laser power increases in this interval. Due to the narrow nanoparticle size dispersion achieved at the highest laser powers two absorption band edges are clearly distinguishable at about 1.72 and 3.15 eV w…
PREDICTION OF THERMODYNAMIC INSTABILITIES OF PROTEIN SOLUTIONS FROM SIMPLE PROTEIN-PROTEIN INTERACTIONS
2013
Statistical thermodynamics of protein solutions is often studied in terms of simple, microscopic models of particles interacting via pairwise potentials. Such modelling can reproduce the short range structure of protein solutions at equilibrium and predict thermodynamics instabilities of these systems. We introduce a square well model of effective protein-protein interaction that embeds the solvent's action. We modify an existing model [45] by considering a well depth having an explicit dependence on temperature, i.e. an explicit free energy character, thus encompassing the statistically relevant configurations of solvent molecules around proteins. We choose protein solutions exhibiting dem…
Toward Quaternary QCA : Novel Majority and XOR Fuzzy Gates
2022
As an emerging nanotechnology, quantum-dot cellular automata (QCA) has been considered an alternative to CMOS technology that suffers from problems such as leakage current. Moreover, QCA is suitable for multi-valued logic due to the simplicity of implementing fuzzy logic in a way much easier than CMOS technology. In this paper, a quaternary cell is proposed with two isolated layers because of requiring three particles to design this quaternary cell. Moreover, due to the instability of the basic gates, the three particles cannot be placed in one layer. The first layer of the proposed two-layer cell includes a ternary cell and the second one includes a binary cell. It is assumed that the over…
Critical adsorption of a single macromolecule in polymer brushes.
2014
The adsorption of long flexible macromolecules by polymer brush-coated surfaces is studied by molecular dynamics simulations and by calculations using density functional and self-consistent field theories. The case of repulsive interactions between the substrate surface and the monomers of both the brush polymers and the extra chains that can get absorbed into the brush is considered. Under good solvent conditions, critical absorption can occur, if the interaction between the monomers of the brush polymers and the extra chain is (weakly) attractive. It is shown that it is possible to map out the details of the critical absorption transition, if the chain length and/or the grafting density o…
The growth of charged platelets.
2014
Growth models of charged nanoplatelets are investigated with Monte Carlo simulations and simple theory. In a first model, 2-dimensional simulations in the canonical ensemble are used to demonstrate that the growth of a single weakly charged platelet could be limited by its own internal repulsion. The short range attractive interaction in the crystal is modeled with a square well potential while the electrostatic interactions are described with a screened Coulomb potential. The qualitative behavior of this case can also be described by simply balancing the attractive crystal energy with the screened Coulomb repulsion between the crystal sites. This repulsion is a free energy term dominated b…
A model study on the nuclear photoeffect
1977
In a simple model of a spinless particle moving in a finite square well potential influences of final state Born approximation and of various approximations in the electromagnetic operators on photoabsorption differential, total and integrated cross sections are investigated. While the Born approximation is very poor in all respects, the long wave length approximation turns out to be the best and reproduces the total cross section quite well. However, appreciable deviations occur in the differential cross section at intermediate energies. The integrated cross section slightly exceeds the classical sum rule resulting from nonanalyticity of the forward compton scattering amplitude, as is disc…